A New Cardenolide and Two New Pregnane Glycosides from the Root Barks of Periploca sepium

by Yan-Ru Deng*, Yin-Pan Wei, Fei Yin, Hong Yang, and Ying Wang

Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China (phone: +86-22-23052125; fax: +86-22-23051066; e-mail: dyanru@yahoo.com.cn)

A new cardenolide and two new pregnane glycosides, periplogenin 3- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 4)$ - β -sarmentopyranoside] (1), $(3\beta,20S)$ -pregn-5-ene-3,17,20-triol 20- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 6)$ -O-glucopyranosyl- $(1 \rightarrow 4)$ - β -canaropyranoside] (2), and $(3\beta,14\beta,17\alpha)$ -3,14,17-trihydroxy-21-methoxypregn-5-en-20-one 3- $[O-\beta$ -oleandropyranosyl- $(1 \rightarrow 4)$ -O- β -cymaropyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranoside] (3), were isolated from the root barks of *Periploca sepium* BGE, together with seven related known compounds, periplogenin, xysmalogenin, $(3\beta,20S)$ -pregn-5-ene-3,17,20-triol, $(3\beta,14\beta,17\alpha)$ -3,14,17-trihydroxy-21-methoxypregn-5-ene-3,20-diol 3- β -glucopyranoside 20- β -glucopyranoside, $(3\beta,20S)$ -pregn-5-ene-3,20-diol 3- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranoside] 20- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 6)$ - β -glucopyranosyl- $(1 \rightarrow 2)$ - β -digitalopyranoside], and $(3\beta,20S)$ -pregn-5-ene-3,20-diol 20- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 6)$ - β -glucopyranosyl- $(1 \rightarrow 6)$ - β -glucopyranoside]. Their structures were elucidated on the basis of spectroscopic analyses.

Introduction. – The root barks of *Periploca sepium* BGE (Asclepiadaceae), a traditional Chinese herb medicine called 'xiangjiapi', has been widely used for many years for relieving rheumatic conditions and slaking dropsy, and for strengthening the bone and the musculature [1]. More recently, the root barks of *Periploca sepium* has been used to suppress tumor and to treat chronic congestive heart failure [2–4]. Previous phytochemical studies on the *Periploca sepium* have led to the isolation of pregnane derivatives, cardenolides, oligosaccharides, coumarins, flavonoids, and triterpenoids, some of them being biologically active [5–6]. In the search of its bioactive constituents, a new cardenolide and two new pregnane glycosides were isolated from the root barks of *Periploca sepium* along with seven known compounds. In this article, we report the isolation and structure elucidation of these compounds.

Results and Discussion. – Compound **1** was isolated as a white amorphous powder and had a molecular formula $C_{36}H_{56}O_{13}$ on the basis of the HR-ESI-MS (m/z 719.3597 ($[M + Na]^+$)) and NMR analysis. The IR spectrum indicated the presence of OH (3448 cm⁻¹) and α,β -unsaturated γ -lactone groups (1779 and 1739 cm⁻¹). The ¹H- and ¹³C-NMR and DEPT spectra revealed the presence of characteristic signals of a cardenolide. Further analysis of HSQC, HMBC, TOCSY, ¹H,¹H-COSY, and NOESY spectra defined the structure of **1** as periplogenin 3-[O- β -glucopyranosyl-($1 \rightarrow 4$)- β sarmentopyranoside] (**1**), a new compound.

The ¹H-NMR spectrum of **1** displayed two angular Me groups at $\delta(H)$ 1.01 (*s*) and 1.03 (*s*), an O-bearing CH₂ moiety at $\delta(H)$ 5.02 and 5.29, and an olefinic H-atom at

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

 δ (H) 6.13 (br. s) (*Table 1*). The ¹³C-NMR and DEPT spectra of **1** revealed 36 C-atom signals, which consisted of four Me, twelve CH₂, fourteen CH, and six quaternary Catoms (*Table 1*). A C=O signal resonated at δ (C) 174.5, and olefinic C-atom signals were observed at $\delta(C)$ 175.9 and 117.7. Interpretation of these results suggested the presence of a cardenolide skeleton. Comparing the ¹³C-NMR data of the aglycone of 1 with those of the known compound periplogenin (= $(3\beta,5\beta)$ -3,5,14-trihydroxycard-20(22)-enolide) [7], the significant differences were the downfield shift of C(3) ($\Delta \delta =$ +7.9 ppm), and the upfield shifts of C(2) and C(4) ($\Delta \delta = -2.1$ and 2.5 ppm, resp.) owing to the glycosidation effect. Therefore, 1 was a 3-glycoside of periplogenin. In addition, the ¹H-NMR spectrum of **1** showed a secondary Me group and a MeO group of a deoxysugar, and two anomeric-H-atom signals at $\delta(H)$ 5.05 (dd, J=9.2, 1.4 Hz) and 4.91 (d, J = 7.6 Hz), indicating the presence of two sugar moieties with two β linkages. One sugar unit was assigned to a β -sarmentopyranose (=2,6-dideoxy-3-Omethyl- β -arabino-hexopyranose = Sar) unit on the basis of comparison of the ¹H- and ¹³C-NMR data with those of [8][9], which was supported by the NOESY correlations H-C(1')/H-C(5') and $H_a-C(2')$, H-C(4')/H-C(5'), and $H-C(3')/H_{\beta}-C(2')$ (Fig. 1). Similarly, the other sugar unit was characterized as a β -glucopyranose (Glc). The HMBC spectrum of **1** showed ¹H, ¹³C long-range correlations between δ (H) 5.05 (H–C(1') of Sar) and δ (C) 75.7 (C(3) of aglycone), and between δ (H) 4.91 (H-C(1'')) of Glc) and $\delta(C)$ 73.6 (C(4') of Sar), indicating the linkage of C(1') of Sar to C(3) of the aglycone, and of C(1'') of Glc to C(4') of Sar, respectively.

Fig. 1. Key HMBC $(H \mathop{\rightarrow} C)$ and key NOESY $(H \mathop{\leftrightarrow} H)$ correlations of 1

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of Compound **1**. δ in ppm, *J* in Hz.

	$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$		$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$
$CH_2(1)$	26.1	1.33-1.36 (<i>m</i>), 1.40-1.41 (<i>m</i>)	H-C(17)	51.0	2.78 - 2.80 (m)
			Me(18)	16.2	1.01 (s)
$CH_{2}(2)$	26.5	1.63-1.67 (<i>m</i>), 2.05-2.07 (<i>m</i>)	Me(19)	17.2	1.03 (s)
			C(20)	175.9	_
H-C(3)	75.7	4.34-4.37 (<i>m</i>)	CH ₂ (21)	73.7	5.02 (br. $d, J = 17.5$), 5.29 (br. $d, J = 17.5$)
$CH_2(4)$	35.4	1.48 - 1.50 (<i>m</i>), $1.91 - 1.94$ (<i>m</i>)	H - C(22)	117.7	6.13 (br. <i>s</i>)
C(5)	73.6	_	C(23)	174.5	-
$CH_{2}(6)$	35.4	1.48 - 1.50 (m), 1.84 - 1.87 (m)	Sar		
			H-C(1')	97.8	5.05 (dd, J = 9.2, 1.4)
$CH_{2}(7)$	24.4	1.27 - 1.30 (m), 2.21 - 2.24 (m)	$CH_2(2')$	31.6	$2.30-2.32 (m, H_{a}), 2.02-2.04 (m, H_{\beta})$
H-C(8)	41.0	1.80 - 1.84(m)	H-C(3')	76.4	3.99(q, J = 2.8)
H-C(9)	39.2	1.58 - 1.63 (m)	H-C(4')	73.6	3.84 (br. s)
C(10)	41.2	_	H-C(5')	69.5	4.12 (q, J = 6.5)
CH ₂ (11)	22.0	1.25 - 1.27 (m), 1.40 - 1.41 (m)	Me(6')	17.5	1.48 (d, J = 6.5)
			MeO-C(3')	56.6	3.25(s)
CH ₂ (12)	39.9	1.36 - 1.38 (m), 1.41 - 1.45 (m)	Glc		
			H - C(1'')	103.5	4.91 (d, J = 7.6)
C(13)	50.0	_	H-C(2'')	74.7	3.96 - 3.98(m)
C(14)	84.7	_	H-C(3")	78.6	4.26 - 4.23 (m)
CH ₂ (15)	33.2	1.82 - 1.85 (m), 2.02 - 2.05 (m)	H-C(4'')	71.9	4.15 - 4.17(m)
,			H - C(5'')	78.5	3.94 - 3.97 (m)
CH ₂ (16)	27.3	$1.90\!-\!1.94~(m),2.05\!-\!2.07~(m)$	CH ₂ (6")	63.1	4.33-4.34 (<i>m</i>), 4.52-4.55 (<i>m</i>)
^a) Measu	red at 1	00 MHz in C ₅ D ₅ N. ^b) Measure	d at 400 MHz	in C ₅ D	₅ N.

Compound 2 was obtained as a white amorphous powder. Its molecular formula was determined to be $C_{39}H_{64}O_{16}$ by HR-ESI-MS $(m/z \ 811.4062 \ ([M+Na]^+))$ and ¹³C-NMR data. The IR spectrum showed absorptions of OH (3426 cm^{-1}) and CH₂ groups (2936 cm⁻¹). The ¹³C-NMR spectrum of **2** exhibited 39 C-atom signals, 21 of them corresponding to a pregnane skeleton and 18 corresponding to a sugar portion (Table 2). The ¹H-NMR spectrum of the aglycone portion showed signals for two angular Me groups at $\delta(H) 0.76(s)$ and 1.07(s), a secondary Me signal at $\delta(H) 1.61(d)$ J = 6.4 Hz), and one olefinic H-atom at $\delta(H)$ 5.41 (br. s) (*Table 2*). The ¹³C-NMR and DEPT spectra showed four Me, eleven CH₂, twenty CH, and four quaternary C-atoms (*Table 2*). In a detailed comparison of the 1 H- and 13 C-NMR data of the aglycone of 2 with those of $(3\beta, 20S)$ -pregn-5-ene-3,17,20-triol, all signals due to the aglycone of 2 were very similar to those of $(3\beta, 20S)$ -pregn-5-ene-3,17,20-triol [10]. Additionally, the ¹H- and ¹³C-NMR spectra of **2** displayed signals for three anomeric H-atoms at $\delta(H)$ 4.87 (d, J = 7.6 Hz), 4.84 (d, J = 7.6 Hz), and 4.82 (br. d, J = 9.6 Hz), and the corresponding C-atoms at $\delta(C)$ 105.6, 104.5, and 102.0, respectively. The β -configuration of the anomeric H-atoms was evident from their large coupling constants (${}^{3}J$ = 7.6–9.6 Hz). The assignments of all the C- and H-atom signals of the sugar moieties were determined from HMBC, HSQC, 1H,1H-COSY, NOESY, and TOCSY experiments, and the three sugar units were identified as one β -canaropyranose (=2,6dideoxy- β -xylo-hexopyranose = Can) unit and two β -glucopyranose units, by comparison of their ¹H- and ¹³C-NMR data with those in [11]. In the TOCSY plot of 2, the anomeric H-atom that was ascribed to the β -canaropyranose unit at $\delta(H)$ 4.82 (H-C(1') of Can) showed connectivity with two CH₂ H-atoms at δ (H) 2.36–2.41 $(H_a - C(2'))$ and 1.82-1.84 $(H_{\beta} - C(2'))$ of Can, and with three CH at $\delta(H)$ 4.00 (H-C(3')), 3.39 (H-C(4')), and 3.71 (H-C(5')) of Can. The NOESY plot also showed the NOE correlations H-C(1')/H-C(2') and H-C(5'), and H-C(3')/H-C(5') of Can (Fig. 2). The linkage sites of each sugar residue were determined from the following HMBC correlations: H-C(1') of Can ($\delta(H)$ 4.82)/C(20) of the aglycone (δ (C) 83.2), H–C(1") of Glc(I) (δ (H) 4.87/C(4') of Can (δ (C) 89.4), and H-C(1'') of Glc(II) ($\delta(H)$ 4.84)/C(6'') of Glc(I) ($\delta(C)$ 69.9). Therefore, compound 2

Fig. 2. Main NOESY $(H \leftrightarrow H)$ correlations of 2

Table 2.	^{1}H - and	$^{13}C-NMR$	Data of	Com	pounds	2 and	3 . c) in 1	opm, J	in	Hz.

	2		3			
	$\delta(C)^a)$	$\delta(H)^b)$	$\delta(C)^a)$	$\delta(\mathrm{H})^{\mathrm{b}})$		
CH ₂ (1)	37.8	1.03 - 1.07 (m), 1.82 - 1.84 (m)	37.2	1.05 - 1.07 (m), 1.79 - 1.82 (m)		
$CH_2(2)$	32.4	1.50 - 1.53(m), 1.79 - 1.82(m)	30.3	1.66 - 1.69 (m), 2.08 - 2.11 (m)		
H-C(3)	71.2	3.77 - 3.81 (m)	77.3	3.78 - 3.83(m)		
CH ₂ (4)	43.5	2.60-2.61(m)	39.2	2.29-2.32(m), 2.50-2.53(m)		
C(5)	141.9	_	140.0	-		
H-C(6)	121.2	5.41 (br. s)	121.9	5.45 (br. s)		
$CH_2(7)$	32.6	2.01 - 2.07(m)	26.8	2.50 - 2.53(m)		
H-C(8)	32.3	1.60 - 1.65(m)	37.8	1.97 - 1.99(m)		
H-C(9)	50.3	1.03 - 1.07 (m)	46.2	1.11 - 1.16(m)		
C(10)	36.9	-	37.8	_		
CH ₂ (11)	21.0	1.41 - 1.45 (m), 1.54 - 1.60 (m)	20.7	1.21 - 1.24 (m), 1.40 - 1.41 (m)		
$CH_{2}(12)$	37.8	1.90 - 1.94 (m), $2.00 - 2.07$ (m)	31.7	1.21 - 1.24 (m), $1.30 - 1.31$ (m)		
C(13)	45.9	-	51.5	-		
H-C(14) or $C(14)$	51.4	2.12 - 2.20 (m)	88.3	_		
CH ₂ (15)	23.9	1.19 - 1.22 (m), $1.79 - 1.86$ (m)	32.3	1.40 - 1.42 (m), $2.02 - 2.06 (m)$		
$CH_{2}(16)$	31.5	2.13-2.15 (m), 2.16-2.19 (m)	34.1	2.91 - 2.95 (m), $2.95 - 2.97$ (m)		
C(17)	85.2		93.5			
Me(18)	14.5	0.76(s)	13.6	1.36(s)		
Me(19)	19.6	1.07(s)	19.6	0.94(s)		
H = C(20) or $C(20)$	83.2	3.90 - 3.93 (m)	208.5	_		
$Me(21)$ or $CH_{2}(21)$	18.1	161 (d I = 64)	200.0	465 (d I = 188) 492 (d I = 188)		
$Me(21)$ of $Oldsymbol{Ol$	10.1	1.01(a, b = 0.1)	58.9	3.52 (s)		
Can			Cvm(I)	5.52 (3)		
$H_{-}C(1')$	102.0	4.82 (br $d_{1} - 9.6$)	96.3	528 (br. $d I = 92$)		
$CH_{2}(2)$	39.5	1.82 - 1.84 (m) 2.36 - 2.41 (m)	37.0	1.73 - 1.78 (m) 2.29 - 2.31 (m)		
$H_{-}C(3')$	70.3	400-405(m)	78.0	4.07 (hr s)		
H = C(4')	89.4	3.39(t, I-8.8)	83.2	3.52 (m)		
H = C(5')	70.9	3.55(l, 3 = 0.5) 3.71(da I = 8.8.64)	68.0	$A_{15}(da I - 88.64)$		
M=C(5) Me(6')	18.4	1.69 (d I - 6.4)	18.6	1.37 (d I - 6.4)		
Me(0) Me(-C(3))	10.4	1.09(u, y = 0.4)	58.8	3.47 (s)		
$\operatorname{Glc}(\mathbf{I})$			Cvm(II)	5.47 (3)		
$H_{C(1'')}$	105.6	487(d I = 76)	100 A	511(brdI=02)		
H = C(2'') or $CH(2'')$	74.7	4.01 4.02 (m)	27.6	5.11 (01. u, J = 9.2) 1.75 1.80 (m) 2.21 2.22 (m)		
H = C(2'')	77.0	4.01 - 4.05 (m)	57.0 777	$1.75 - 1.80 \ (m), 2.51 - 2.52 \ (m)$		
H = C(3')	71.9	4.23 - 2.20 (m)	92 A	3.98(01.3)		
$\Pi - C(4)$	79.2	4.01 - 4.03 (m)	63.4 60.0	5.40 (m)		
$\Pi = C(S)$ $CU(6'') \text{ or } M_2(6'')$	/0.2 60.0	4.20 - 4.25 (m)	10.0	4.25 (aq, J = 6.6, 0.2)		
$CH_2(0)$ of Me(0)	09.9	4.00 - 4.04 (m),	19.0	1.58(a, J = 0.2)		
		4.96 (Br. $a, J = 8.4$)	50.0	2.47()		
MeO-C(5)			38.9	5.47 (8)		
$\operatorname{Glc}(\Pi)$	1015		101.2			
$H - C(1^{m})$	104.5	4.84(a, J = 7.6)	101.3	4.75 (br. $a, J = 9.6$)		
$H - C(2^{m})$ or $CH_2(2^{m})$	75.4	4.02 - 4.05 (m)	37.3	$2.08 - 2.11 \ (m), \ 2.50 - 2.53 \ (m)$		
$H - C(3^{m})$	76.2	4.15 - 4.17(m)	/9.0	3.72(m)		
$H - C(4^{\prime\prime\prime})$	71.3	4.23 - 4.26 (m)	82.0	4.70 (br. $d, J = 9.2$)		
H-C(5''')	78.4	4.15 - 4.17(m)	71.6	3.71(m)		
$CH_2(6''')$ or $Me(6''')$	62.4	4.38 (dq, J = 12, 5.2),	18.6	1.79 (d, J = 6.00)		
<i>Me</i> O-C(3''')		$4.50 \ (dq, J = 12, 2.4)$	57.1	3.61 (s)		
^a) Measured at 100 MH	Iz in C5D	0₅N. ^b) Measured at 400 MHz in	C ₅ D ₅ N.			

could be identified as $(3\beta,20S)$ -pregn-5-ene-3,17,20-triol 20- $[O-\beta$ -glucopyranosyl- $(1 \rightarrow 6)$ - $O-\beta$ -glucopyranosyl- $(1 \rightarrow 4)$ - β -canaropyranoside], a new compound.

Compound 3 was isolated as a white amorphous powder and had a molecular formula $C_{43}H_{70}O_{14}$ on the basis of the HR-ESI-MS (m/z 833.4612 ($[M + Na]^+$)), ¹³C-NMR, and DEPT data. The IR spectrum revealed the presence of OH (3379 cm⁻¹), C=O (1725 cm⁻¹), and C=C groups (1648 cm⁻¹). The ¹H-NMR spectrum of **3** displayed two Me groups at $\delta(H) 0.94$ (s) and 1.36 (s), a MeO group at $\delta(H) 3.52$ (s), and one olefinic H-atom at $\delta(H)$ 5.45 (br. s) assigned to the aglycone of **3** (*Table 2*). In the ¹³C-NMR spectrum, a total of 43 C-signals were observed, including one C=O group, five quaternary C-atoms, five Me, four MeO, twelve CH₂, and sixteen CH groups (Table 2). These data were characteristic of a C21 steroidal glycoside. Comparison of the ¹³C-NMR data of **3** with those of the known compound $(3\beta, 14\beta, 17\alpha)$ -3,14,17trihydroxy-21-methoxypregn-5-en-20-one, indicated that all the signals were very similar, except that C(3) (δ (C) 77.3) was shifted downfield by 5.9 ppm, while C(2) $(\delta(C) 30.3)$ and C(4) $(\delta(C) 39.2)$ were shifted upfield by 1.7 and 4.4 ppm, respectively [7] [12]. The relative configuration of the aglycone of **3** was deduced from its NOESY plot as shown in Fig. 3. Therefore, this glycoside was a $(3\beta, 14\beta, 17\alpha)$ -3,14,17-trihydroxy-21-methoxypregn-5-en-20-one derivative with a sugar moiety linked at its HO-C(3)group. The ¹H-NMR spectrum of 3 displayed three secondary Me and three MeO signals of deoxysugars and three anomeric-H-atom signals at $\delta(H)$ 5.28 (1 H, br. d, J = 9.2 Hz), 5.11 (1 H, br. d, J = 9.2 Hz), and 4.75 (1 H, br. d, J = 9.6 Hz), indicating the presence of three sugar units with three β -linkages. Based on HMBC, HSQC, ¹H,¹H-COSY, NOESY, and TOCSY experiments, the three sugar residues were identified as two β -cymaropyranose (=2,6-dideoxy-3-O-methyl-ribo- β -hexopyranose = Cym) units and one β -oleandropyranose (=2,6-dideoxy-3-O-methyl- β -xylo-hexopyranose = Ole) unit by comparison of their ¹H- and ¹³C-NMR data with those in the literature [12]. The sugar sequence and their linkage sites were confirmed by the HMBC experiment, which showed unequivocal correlations H-C(1') of $Cym(I) (\delta(H) 5.28)/C(3)$ of the aglycone (δ (C) 77.3), H–C(1'') of Cym(II) (δ (H) 5.11)/C(4') of Cym(I) (δ (C) 83.2), and H-C(1") of Ole (δ (H) 4.75)/C(4") of Cym(II) (δ (C) 83.4). Therefore, the structure of **3** was determined to be $(3\beta,14\beta,17\alpha)$ -3,14,17-trihydroxy-21-methoxypregn-5-en-20-one 3-[O- β -oleandropyranosyl- $(1 \rightarrow 4)$ -O- β -cymaropyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranoside], a new compound.

Fig. 3. Main NOESY $(H \leftrightarrow H)$ correlations of 3

The seven known compounds periplogenin, xysmalogenin (=(3β)-3,14-dihydroxycarda-5,20(22)-dienolide) [7], (3β ,20S)-pregn-5-ene-3,17,20-triol, (3β ,14 β ,17 α)-3,14,17-trihydroxy-21-methoxypregn-5-ene-20-one, (3β ,20S)-pregn-5-ene-3,20-diol 3- β glucopyranoside 20- β -glucopyranoside [13], (3β ,20S)-pregn-5-ene-3,20-diol 3- β - acetyl- β -digitalopyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranoside] 20-[O- β -glucopyranosyl- $(1 \rightarrow 6)$ -O- β -glucopyranosyl- $(1 \rightarrow 2)$ - β -digitalopyranoside] [14], and $(3\beta,20S)$ -pregn-5-ene-3,20-diol 20-[O- β -glucopyranosyl- $(1 \rightarrow 6)$ - β -glucopyranoside] [15] were also isolated and identified by comparison of their spectroscopic data with those reported in the literature. Among them, compound $(3\beta,20S)$ -pregn-5-ene-3,20-diol 3- β -glucopyranosid 20- β -glucopyranoside was isolated from this plant for the first time.

The research work was supported by the *Project in the National Science and Technology Pillar Program* (2006BAI14B01).

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 100–200 and 200–300 mesh; Qingdao Haiyang Chemical Factory, Qingdao, P. R. China). TLC: precoated plates (SiO₂ G; Qingdao Haiyang Chemical Factory, Qingdao, P. R. China), Column chromatography (CC): silica gel (SiO₂) or RP- C_{18} SiO₂ (Merck). Optical rotation: Perkin-Elmer-241MC polarimeter. IR Spectra: Bruker-Tensor-27 FT-IR spectrometer; KBr pellets; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker-AM-400 spectrometer; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Agilent-6520 LC/MS accurate-mass Q-TOF spectrometer; in m/z (rel. %).

Plant Material. The root barks of *Periploca sepium* were purchased from Anguo, Hebei Province, P. R. China, in Autumn 2007, and identified by Prof. *Jun-Hua Guo* (Tianjin University of Traditional Chinese Medicine). A voucher specimen (No. 20070912) was deposited with the Herbarium of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.

Extraction and Isolation. The air-dried root barks of *P. sepium* (15.0 kg) were extracted with 70% EtOH (3 × 30.0 l) for one week each time at r.t. The extract was concentrated, the residue suspended in H₂O (2.0 l) and then successively extracted with AcOEt (3 × 3.0 l) and BuOH (3 × 3.0 l), yielding an AcOEt extract (150 g) and a BuOH extract (600 g), resp. The AcOEt extract (150 g) was separated by CC (SiO₂; petroleum ether (PE)/AcOEt $50:1 \rightarrow 1:1$): *Fractions* A - D. *Fr.* B (5 g) was separated by CC (SiO₂; PE/AcOEt $6:1 \rightarrow 1:2$): (3 β ,14 β ,17 α)-3,14,17-trihydroxy-21-methoxypregn-5-en-20-one (35 mg) and periplogenin (50 mg). *Fr.* C (6 g) was separated by CC (SiO₂; AcOEt/EtOH 25:1): *Fractions* E - J. *Fr.* E (5 g) was subjected to CC (*RP*-*C*₁₈, MeOH/H₂O 20 \rightarrow 40%): **1** (18 mg), **2** (18 mg), and (3 β ,20*S*)-pregn-5-ene-3,20-diol 3- β -glucopyranoside (21 mg). *Fr.* F (3 g) was subjected to CC (*RP*-*C*₁₈, MeOH/H₂O 60 \rightarrow 70%): (3 β ,20*S*)-pregn-5-ene-3,20-diol 3-[*O*-2-*O*-acetyl- β -digitalopyranosyl-(1 \rightarrow 4)- β -cymaropyranoside] 20-[*O*- β -glucopyranosyl-(1 \rightarrow 2)- β -digitalopyranoside] (35 mg). *Fr.* G (4.5 g) was subjected to CC (*RP*-*C*₁₈, MeOH/H₂O 50 \rightarrow 60%): **3** (22 mg) and (3 β ,20*S*)-pregn-5-ene-3,20-diol 20-[*O*- β -glucopyranosyl-(1 \rightarrow 6)- β -glucopyranoside] (16 mg).

Periplogenin 3-[O- β -Glucopyranosyl-(1 \rightarrow 4)- β -sarmentopyranoside] (= (3 β ,5 β)-3-[(2,6-Dideoxy-4-O- β -glucopyranosyl-3-O-methyl- β -arabino-hexopyranosyl)oxy]-5,14-dihydroxycard-20(22)-enolide; **1**). White amorphous powder. [a]_D²⁵ = - 8.7 (c = 0.28, MeOH). UV (MeOH): 218 (3.13). IR: 3448, 2938, 2879, 1779, 1739, 1627, 1449, 1093, 1037. ¹H- and ¹³C-NMR: *Table 1*. HR-ESI-MS: 719.3597 ([M + Na]⁺, C₃₆H₅₆NaO⁺₁₅; calc. 719.3619).

 $(3\beta,20S)$ -Pregn-5-ene-3,17,20-triol 20-[O- β -Glucopyranosyl- $(1 \rightarrow 6)$ -O- β -glucopyranosyl- $(1 \rightarrow 4)$ - β -canaropyranoside] (= $(3\beta,20S)$ -3,17-Dihydroxypregn-5-en-20-yl O- β -Glucopyranosyl- $(1 \rightarrow 4)$ -O- β -glucopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy- β -xylo-hexopyranoside; **2**). White amorphous powder. [α] $_{25}^{25} = -58.2$ (c = 0.20, pyridine). IR: 3426, 2936, 2891, 1657, 1461, 1168, 1063, 1030. ¹H- and ¹³C-NMR: Table 2. HR-ESI-MS: 811.4062 ([M+Na]⁺, C₃₉H₆₄NaO₁₆; calc. 811.4092).

 $(3\beta,14\beta,17\alpha)$ -3,14,17-Trihydroxy-21-methoxypregn-5-en-20-one 3-[O- β -oleandropyranosyl- $(1 \rightarrow 4)$ -O- β -cymaropyranosyl- $(1 \rightarrow 4)$ - β -cymaropyranoside] (= $(3\beta,14\beta,17\alpha)$ -3-{[O-2,6-Dideoxy-3-O-methyl- β -xylo-hexopyranosyl- $(1 \rightarrow 4)$ -O-2,6-dideoxy-3-O-methyl-ribo- β -hexopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy-3-O-methyl-ribo- β -hexopyranosyl- $(1 \rightarrow 4)$ -2,6-dideoxy-3-O-methyl-ribo- β -hexopyranosyl]oxy]-14,17-dihydroxy-21-methoxypregn-5-en-20-one; **3**). White amor-

phous powder. $[a]_{25}^{25} = -27.6 \ (c = 0.20, \text{MeOH})$. IR: 3379, 2965, 2895, 1725, 1648, 1447, 1365, 1161, 1100, 1061, 1004. ¹H- and ¹³C-NMR: *Table 2*. HR-ESI-MS: 833.4612 ($[M + \text{Na}]^+$, $C_{43}H_{70}\text{NaO}_{14}^+$; calc. 833.4663).

REFERENCES

- Jiangsu New Medical College, 'Dictionary of Chinese Herb Medicines', Shanghai Scientific and Technologic Press, Shanghai, 1998, p. 1683.
- [2] K. Umehara, N. Sumii, H. Satoh, T. Miyase, M. Kuroyanagi, A. Ueno, Chem. Pharm. Bull. 1995, 43, 1565.
- [3] J. Zhang, B.-E. Shan, G.-S. Liu, X.-T. Zhao, S.-H. Chen, Carcinogen., Teratogen. Mutagen. 2006, 18, 108.
- [4] L.-Q. Xu, H.-Z. Lu, Y.-L. Zhang, Chin. Med. Mater. Med. 1998, 19, 29.
- [5] Y.-H. Zhang, F.-P. Wang, Nat. Prod. Res. Dev. 2003, 15, 157.
- [6] Y.-N. Zhu, W.-M. Zhao, Y.-F. Yang, Q.-F. Liu, Y. Zhou, J. Tian, J. Ni, Y.-F. Fu, X.-G. Zhong, W. Tang, R. Zhou, P.-L. He, X.-Y. Li, J.-P. Zuo, *J. Pharmacol. Exp. Ther.* 2006, *316*, 662.
- [7] J. Xu, K. Takeya, H. Itokawa, *Phytochemistry* 1990, 29, 344.
- [8] F. Abe, T. Yamauchi, K. Minato, Phytochemistry 1996, 42, 45.
- [9] M. Zhao, L. Bai, L. Wang, A. Toki, T. Hasegawa, M. Kikuchi, M. Abe, J.-i. Sakai, R. Hasegawa, Y. Bai, T. Mitsui, H. Ogura, T. Kataoka, S. Oka, H. Tsushima, M. Kiuchi, K. Hirose, A. Tomida, T. Tsuruo, M. Ando, J. Nat. Prod. 2007, 70, 1098.
- [10] H. Itokawa, J. Xu, K. Takeya, Chem. Pharm. Bull. 1987, 35, 4524.
- [11] J. Feng, R. Zhang, Y. Zhou, Z. Chen, W. Tang, Q. Liu, J. Zuo, W. Zhao, *Phytochemistry* 2008, 69, 2716.
- [12] J.-Q. Feng, W.-M. Zhao, Helv. Chim. Acta 2008, 91, 1798.
- [13] J. E. Olive, W. R. Lusby, R. M. Waters, M. J. Thompson, J. Nat. Prod. 1988, 51, 103.
- [14] H. Itokawa, J. Xu, K. Takeya, *Phytochemistry* 1988, 27, 1173.
- [15] X.-G. Tan, X.-L. Zhang, S.-L. Peng, X. Xun, L.-S. Ding, Chem. J. Chin. Univ. 2003, 24, 436.

Received September 3, 2009